Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 15(2): 193-203.e6, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340729

RESUMO

A strategy to obtain the greatest number of best-performing variants with least amount of experimental effort over the vast combinatorial mutational landscape would have enormous utility in boosting resource producibility for protein engineering. Toward this goal, we present a simple and effective machine learning-based strategy that outperforms other state-of-the-art methods. Our strategy integrates zero-shot prediction and multi-round sampling to direct active learning via experimenting with only a few predicted top variants. We find that four rounds of low-N pick-and-validate sampling of 12 variants for machine learning yielded the best accuracy of up to 92.6% in selecting the true top 1% variants in combinatorial mutant libraries, whereas two rounds of 24 variants can also be used. We demonstrate our strategy in successfully discovering high-performance protein variants from diverse families including the CRISPR-based genome editors, supporting its generalizable application for solving protein engineering tasks. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Aprendizado de Máquina , Engenharia de Proteínas , Humanos , Mutação/genética , Genoma
2.
PLoS One ; 11(12): e0167828, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936094

RESUMO

Retinal ischemia/reperfusion injury is a common feature of various retinal diseases such as glaucoma and diabetic retinopathy. Lutein, a potent anti-oxidant, is used to improve visual function in patients with age-related macular degeneration (AMD). Lutein attenuates apoptosis, oxidative stress and inflammation in animal models of acute retinal ischemia/hypoxia. Here, we further show that lutein improved Muller cell viability and enhanced cell survival upon hypoxia-induced cell death through regulation of intrinsic apoptotic pathway. Moreover, autophagy was activated upon treatment of cobalt (II) chloride, indicating that hypoxic injury not only triggered apoptosis but also autophagy in our in vitro model. Most importantly, we report for the first time that lutein treatment suppressed autophagosome formation after hypoxic insult and lutein administration could inhibit autophagic event after activation of autophagy by a pharmacological approach (rapamycin). Taken together, lutein may have a beneficial role in enhancing glial cell survival after hypoxic injury through regulating both apoptosis and autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipóxia Celular , Cobalto/farmacologia , Luteína/farmacologia , Retina/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Ratos , Retina/citologia
3.
PLoS One ; 11(2): e0147961, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26882120

RESUMO

PURPOSE: Alpha-enolase (ENO1), a major glycolytic enzyme, is reported to be over-expressed in various cancer tissues. It has been demonstrated to be regulated by the Hypoxia-inducible factor 1-α (HIF-1α), a crucial transcriptional factor implicated in tumor progression and cancer angiogenesis. Choroidal neovascularization (CNV), which is a leading cause of severe vision loss caused by newly formed blood vessels in the choroid, is also engendered by hypoxic stress. In this report, we investigated the expression of ENO1 and the effects of its down-regulation upon cobalt (II) chloride-induced hypoxia in retinal pigment epithelial cells, identified as the primary source of ocular angiogenic factors. METHODS: HIF-1α-diminished retinal pigment epithelial cells were generated by small interfering RNA (siRNA) technology in ARPE-19 cells, a human retinal pigment epithelial cell line. Both normal and HIF-1α-diminished ARPE-19 cells were then subjected to hypoxic challenge using cobalt (II) chloride (CoCl2) or anaerobic chamber. The relation between ENO1 expression and vascular endothelial growth factor (VEGF) secretion by retinal pigment epithelial cells were examined. Protein levels of HIF-1α and ENO1 were analyzed using Western Blot, while VEGF secretion was essayed by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity after hypoxia was detected by Lactate Dehydrogenase (LDH) Assay. RESULTS: Upon 24 hr of CoCl2-induced hypoxia, the expression levels of ENO1 and VEGF were increased along with HIF-1α in ARPE-19 cells, both of which can in turn be down-regulated by HIF-1α siRNA application. However, knockdown of ENO1 alone or together with HIF-1α did not help suppress VEGF secretion in hypoxic ARPE-19 cells. CONCLUSION: ENO1 was demonstrated to be up-regulated by HIF-1α in retinal pigment epithelial cells in response to hypoxia, without influencing VEGF secretion.


Assuntos
Biomarcadores Tumorais/genética , Cobalto/farmacologia , Proteínas de Ligação a DNA/genética , Células Epiteliais/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/farmacologia , Fosfopiruvato Hidratase/genética , Proteínas Supressoras de Tumor/genética , Fator A de Crescimento do Endotélio Vascular/genética , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Fosfopiruvato Hidratase/antagonistas & inibidores , Fosfopiruvato Hidratase/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Invest Ophthalmol Vis Sci ; 53(10): 5976-84, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22871829

RESUMO

PURPOSE: Lutein protects retinal neurons by its anti-oxidative and anti-apoptotic properties in ischemia/reperfusion (I/R) injury while its anti-inflammatory effects remain unknown. As Müller cells play a critical role in retinal inflammation, the effect of lutein on Müller cells was investigated in a murine model of I/R injury and a culture model of hypoxic damage. METHODS: Unilateral retinal I/R was induced by a blockade of internal carotid artery using the intraluminal method in mice. Ischemia was maintained for 2 hours followed by 22 hours of reperfusion, during which either lutein (0.2 mg/kg) or vehicle was administered. Flash electroretinogram (flash ERG) and glial fibrillary acidic protein (GFAP) activation were assessed. Lutein's effect on Müller cells was further evaluated in immortalized rat Müller cells (rMC-1) challenged with cobalt chloride-induced hypoxia. Levels of IL-1ß, cyclooxygenase-2 (Cox-2), TNFα, and nuclear factor-NF-kappa-B (NF-κB) were examined by Western blot analysis. RESULTS: Lutein treatment minimized deterioration of b-wave/a-wave ratio and oscillatory potentials as well as inhibited up-regulation of GFAP in retinal I/R injury. In cultured Müller cells, lutein treatment increased cell viability and reduced level of nuclear NF-κB, IL-1ß, and Cox-2, but not TNFα after hypoxic injury. CONCLUSIONS: Reduced gliosis in I/R retina was observed with lutein treatment, which may contribute to preserved retinal function. Less production of pro-inflammatory factors from Müller cells suggested an anti-inflammatory role of lutein in retinal ischemic/hypoxic injury. Together with our previous studies, our results suggest that lutein protected the retina from ischemic/hypoxic damage by its anti-oxidative, anti-apoptotic, and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Hipóxia/prevenção & controle , Luteína/farmacologia , Neuroglia/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Doenças Retinianas/prevenção & controle , Animais , Western Blotting , Células Cultivadas , Cobalto/toxicidade , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Proteína Glial Fibrilar Ácida , Hipóxia/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Estimulação Luminosa , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Retina/fisiopatologia , Doenças Retinianas/metabolismo , Doenças Retinianas/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
5.
PLoS One ; 7(5): e37076, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615897

RESUMO

BACKGROUND: Paired-like homeodomain 2 (PITX2) is a bicoid homeodomain transcription factor which plays an essential role in maintaining embryonic left-right asymmetry during vertebrate embryogenesis. However, emerging evidence suggests that the aberrant upregulation of PITX2 may be associated with tumor progression, yet the functional role that PITX2 plays in tumorigenesis remains unknown. PRINCIPAL FINDINGS: Using real-time quantitative RT-PCR (Q-PCR), Western blot and immunohistochemical (IHC) analyses, we demonstrated that PITX2 was frequently overexpressed in ovarian cancer samples and cell lines. Clinicopathological correlation showed that the upregulated PITX2 was significantly associated with high-grade (P = 0.023) and clear cell subtype (P = 0.011) using Q-PCR and high-grade (P<0.001) ovarian cancer by IHC analysis. Functionally, enforced expression of PITX2 could promote ovarian cancer cell proliferation, anchorage-independent growth ability, migration/invasion and tumor growth in xenograft model mice. Moreover, enforced expression of PITX2 elevated the cell cycle regulatory proteins such as Cyclin-D1 and C-myc. Conversely, RNAi mediated knockdown of PITX2 in PITX2-high expressing ovarian cancer cells had the opposite effect. CONCLUSION: Our findings suggest that the increased expression PITX2 is involved in ovarian cancer progression through promoting cell growth and cell migration/invasion. Thus, targeting PITX2 may serve as a potential therapeutic modality in the management of high-grade ovarian tumor.


Assuntos
Proteínas de Homeodomínio/biossíntese , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fatores de Transcrição/biossíntese , Animais , Ciclo Celular/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Genes myc/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...